همرسی نیمسازهای داخلی

قضیهٔ همرسی نیم‌سازها
در هر مثلث، نیم‌ساز زاویه‌های داخلی همرس هستند.

در مثلث $ABC$، نیم‌ساز زاویه‌های $A$ و $B$ یکدیگر را در نقطهٔ $D$ قطع می‌کنند.

از $D$ بر اضلاع مثلث عمود می‌کنیم.


\[DE=DF.\quad(1)\]
چرا؟


همچنین
\[DF=DH.\quad(2)\]
چرا؟

از رابطه‌های \((1)\) و \((2)\) نتیجه می‌شود: \[DE=DH.\quad(3)\]
با استفاده از عکس قضیهٔ نیم‌ساز، نقطهٔ $D$ روی نیم‌ساز زاویهٔ $C$ قرار دارد.


نتیجهٔ قضیهٔ همرسی نیم‌سازها. اگر به مرکز محل برخورد نیم‌سازها و شعاع فاصلهٔ آن تا ضلع مثلث یک دایره رسم کنیم، ضلع‌های مثلث بر دایره مماس می‌شوند. به این دایره، دایره محاطی داخلی مثلث می‌گویند.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *